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Mechanical theory of structural disjoining pressure in liquid crystal films
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A mechanical theory of structural disjoining pressure in nematic liquid crystal films is developed based on
Laplace’s interfacial stress balance equation. Identification of the interfacial stresses in nematic liquid crystal
interfaces leads to two contributions to the structural disjoining pressure. It is shown that tensor order param-
eter gradients across the film give rise to bulk Ericksen stresses, whose normal component results in a disjoin-
ing pressure that tends to stabilize the film. In addition, tangential gradients in the tensor order parameter give
rise to gradients in interfacial bending stresses whose normal component results in a film pressure that may be
disjoining or conjoining. Phenomenological expressions for the two structural disjoining pressures are obtained
using the classical equations of liquid crystal bulk and surface elasticity.

PACS numbgs): 61.30.Cz, 61.30.Gd, 68.10.Et

Disjoining pressure is a term used to designate an excedsplace’'s equation(2) to derive phenomenological expres-
pressure acting normal to a thin film interfaig2]. When  sions for the structural disjoining pressure in NLC thin films,
the excess pressure is positiveegative it promotes film  surrounded by an isotropic fluid phase, using the classical
stability (instability) and is termed disjoiningconjoining  elasticity theory of NLC; and3) to provide representative
pressure. Classical excess film pressures due to van dexamples of disjoining and conjoining film pressures in
Waals interactions are usually conjoining, while those due t¢ymmetric films. Extensions to other thin film cagg} such
electrostatic repulsion are disjoining. Disjoining pressureds thin NLC films between a solid and air, or between a
models are important to understand and characterize thifiuid droplet and a solid can be performed using the equa-
film hydrodynamics and thin film stability, and to model tions given here. The use of Laplace’s equation to model
phenomena such as foam and emulsion coalescence, afl§ioining pressures is common practice in Boussinesq inter-
wetting and dewetting1,2]. faces[1].

For liquid crystalline(LC) films, such as freely standing  The system considered in this paper is a planar thin NLC
films, additional structural disjoining pressures have been exiilm in contact with an isotropic fluid phase. A classical ex-
perimentally identified[2,3,4. For nematic liquid crystal ample is a NLC film between two large fluid dropldts|.
(NLC) films, orientation gradients across the film due toThe film is assumed to be isothermal, and both phases are
asymmetric interfacial conditions were shown to give riseincompressible. The NLC occupies regigf and the isotro-
to a structural disjoining pressure. A thermodynamic ap-ic fluid regionsR'. The orientation of the interface between
proach was used to formulate this structural disjoiningthe R"/R' regions, denoted bil, is characterized by a unit
pressure in asymmetric NLC filmg4]. Experiments with normalk, directed fromRN into R'. The NLC structure is
symmetric NLC films lead to the identification of another given by the symmetric, tracelessx3 tensor order param-
source of structural disjoining pressure in NLC films. TheeterQ, usually parametrized as follows]:
additional source of disjoining pressure was identified as gra-
dients in the scalar order parameter between the film and the Q=S(nn—1/3)+P(mm~—1I)/3, «y
meniscus in contact with the film. A general formulation of
structural disjoining pressures that takes into account transvhereS(P) is the uniaxial(biaxial) scalar order parameter,
verse and longitudinal nematic ordering gradients has noand(n,m,l) are the orthonormal eigenvectorsjs the direc-
been formulated. Such a formulation will be necessary tdor. The total free energy in a voluméof the nematic poly-
study thin NLC film hydrodynamics and thin NLC film sta- mer bounded by a surfack according to the Landau—de
bility, and to model processes such as formation and stabilitgsennes theory is given Hp—12]
of carbonaceous mesophase foams using discotic NLC pre-
cursors[5].

NLC’s are anisotropic materials whose hydrostafi6$ F:fv[fG(VQHfL(Q)]dV”L fAV(Q’k'N)dAv )
and capillarity[7,8] involves short range elasticity, aniso-
tropic long range bulKFrank elasticity, and anisotropic in-
terfacial tension. It will be shown below that structural film t
pressures arise as a consequence of different gradients ﬁhfe
these elasticities. The objectives of this paper(ajeo for-
mulate a general mechanical model of all structural disjoin-
ing and conjoinin ressures in NLC thin films usin - ﬂ 2 E T

9 jomning p 9 fe(VQ)=ZtVQ™+ —-(V-Q)-(V-Q), )

where the long range Frank elastic free energy derfsity
short range free energy densfty, and the interfacial
energy density are given by

*Fax: (514) 398-6678. Electronic address: inaf@musich.mcgill.ca fL(Q)=atrQ?—b trQ3+c(trQ?)?, (4)
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Y(Q,kN) = Yist Van, (59  stress balance equation, independent of the specific nature of
the bulk phase$l]. In the absence of flow, it is the static
limit of the interfacial momentum balance equation, also

Yar=B11K-N+ B20Q- Q+ B2N-N+ B(k-N)* N=Q-n,  known as the generalized Laplace equafibh The specific
(5b) characteristic nature of the hydrostatics of tdkinterfaces
resides in the constitutive equations tdrandt,. The total
whereV is the gradient operatofL;},i=1,2 are the Frank Stress tensor in the isotropic phases just
elastic constantsenergy/length [i];i=a,b,c are the Lan-
dau coefficientgenergy/volumg ;s is the isotropic interfa- t=—p'l, (7)
cial tension, y,, is the anchoring energy, an{iB;;}.ij
=11,20,22,22 are the anchoring coefficiefénergy/aren wherep' is the hydrostatic pressure. The total stress tensor in
For NLC the order of magnitude of the Frank elastic con-the NLC phase" is given by
stants of 10/ dynes[6], of the isotropic surface tension
1% ergs/cnd [2], and of the anchoring coefficients 19 tN=—p"I+t5, ()
—1 erg/cnt [2].
The Frank elasticity is responsible for the long rangewherep" is the hydrostatic pressure atfdis the Ericksen
transmission of torques and forces and captures nematic tegtress given by
tures and defects, while the short range elasticity captures the o
nematic-isotropic phase transition. The interfacial free en-g G . T ) T T
ergy density is composed of the typical isotropic contribution” &VQ'(VQ) =~ LVQ(VQ) ~L(VQ) - (V-Q).
vis and an anisotropic orientation dependent contribution 9
Yan- The anchoring energy,, is a function ofQ, andk,
which indicates that there are two mechanisms to stor&ollowing Ref.[6] the hydrostatic pressure in the NLC phase
surface elastic energy, one is through macroscopic orientds given by
tion (n,m,l) and the other through the molecular ordering
(S,P. The preferred tensor order parame@y is the one ph=—(fg+f)+®, (10)
that minimizes the interfacial free energy, which in turn se-
lects the orientation of the eigenvectors and the eigenvalueshere ® is a function of density and temperatulg(p,T)
of Q at the interface, and satisfied§,,/dQ)[*'=0dy/dk ~ and is space independent,
=0, where[s] denotes symmetric and traceless. Given space

limitations we refer the reader to Ref42—15 for details on V=0 (12)

orientation anchoring conditions in interfaces involving nem-

atic liquid crystals. Surface anchoring energy gives rise to a new contri-
The interfacial stress balance equation accros\thia- bution to the surface stress tendgrof isotropic materials

terface is given by1] [7,8]. For an interface between an isotropic substrate and

a NLC the surface elastic stress tensor is >a32tensor
given by the sum of the normétension t,, and bending,

—k-(t'=tN) =V tg+ T gk =+ T4k, (6) stresses:
wheret' is the total stress tensor in the isotropic fluid phase, S N d¥an
N : o te=t"+t%  t"=qlg; tP=—1, k|. (12
t" is the total stress tensor in the NLC filry, is the total dk

elastic surface stress tensor acting on Mieinterface, and

I1.4 is the classical disjoining pressure, due to van der Waal§or details on the physics of bending stresses in nematic
and electrostatic interactioni2,14,15. Of these three stress interfaces the reader is referred to R¢&3].

tensors onlyt' is symmetric, while as seen below andt, Using the expression for the surface stress tehsave

are asymmetric. Equatiof®) is a generally valid interfacial find the following expression for the interfacial forte

———} ((V,Q)" M1+ {2Hy }k+

normal stress contribution

dy dy )
o ([ Ha g |—v | D |l
{ (dk j ’(dk } 9

bending stress contribution
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where H= —V,-k/2 is the mean curvature. Equatidh3)  wherell, is the film pressure due to transverse., along
shows that surface gradients in the norrtiehsion) surface k) bulk gradients of the tensor order parameter Hnds the
stresst" give rise to tangentialperpendicular tdk) and nor-  film pressure due to tangenti@le., orthogonal t&) surface
mal forces(parallel tok), while surface gradients of bending gradients of the tensor order parameter. SiHgeis always
stress give rise only to normal forces. Tangential forces giveositive it is a disjoining pressure that tends to promote film
rise to Marangoni nematic flowd6]. Equation(13) shows  stability. On the other hand], can be disjoining or conjoin-
that the latter persist even in the absence of curvatbre ( ing, since the surface gradients can be of either sign. To

=0). make explicit the origin of the structural disjoining pressure
The normal component of E6) is known as the gener- we can identify them with the corresponding stress tensor
alized Laplace equation: components, as follows:
k- (t'=tN) - k=Vgtg ktTgq=f, +1leq, (14 I, = —t5:kk = —tE,, (22)

where f, is the magnitude of the interfacial normal force
originating from the surface gradients of the bending
stresses, and according to Ef3) it is given by

L=V t2hoo, (23

showing that the transverse disjoining pressure is minus the

dYan . d')’an) zzcomponent of the Ericksen stress tensor, while the tangen-
dk s '

k dk

f, =2Hy—2H

(15 tial disjoining pressure is the surface gradient of the surface
bending stress tensor.

The normal force originating at a nematic interface may be The transverse disjoining pressuie is well known and

nonzero even for planar interfaceBl € 0). Replacing ex- has been measured experimentally, although the analysis has

pressiong7)—(9), (15) into Eq. (14) we find that the gener- been mainly restricted to director gradients and not on gra-
alized Laplace equation for NI interfaces is dients of the scalar order parameters. As it appears certain

that for uniaxial materials the uniaxial scalar order parameter

LN ofg . varies across the film thickne$§g], the equation presented
pr—p =llcqt mi(VQ) 'kk here is appropriate, since it takes into account all contribu-
tions arising from bulk gradients across the film thickness.

dvan K dvan T_he tangential disjoining pressulg, d_ue to tangential_ gra-
+12Hy—2H dk —Vs dk | [’ (1) dients of the scalar order parameter is a structural disjoining

pressure contribution that arises naturally when using the
wherepN=—(fg+f ) +®. generalized Laplace equation of liquid crystals, and its exis-
According to the mechanical model of disjoining pressuretence is a direct consequence of anisotropic surface tension
for planar thin films obtained, as done here, by applying theand bending stresses. A similar effectlig has already been
normal stress balance at an interface, the total disjoiningliscussed in the literatuf@] and used to explain disjoining
pressurdl is pressure measurements in the absence of director gradients
across the film thickness, that is, whin =0. In that case
pt—pN=M=Mcq+I1s, (170 the experimental data was explained by the difference of the
) o order parameter in the film and in the reservoir that is in
wherell, is the structural disjoining pressure. For flat planarcontact with the film. Since the order parameters differ, a net
films, the curvature vanishe$i=0), and the normal stress change in the short range energybetween the film and the
balance equatiofL6) for a NLC film simplifies to reservoir exists that results in a net disjoining pressure. In the
mechanical model presented here this effect is taken into
) account since the model is presented in terms of tangential
b=0 gradients of the tensor order parameter.
(18) The magnitudes of the film pressurlls andIl, depend
on the Frank elastic moduli and the anchoring energy, re-
spectively, and the geometry of the film. As measured ex-
perimentally[2,3], the disjoining pressurH , is of the order
M= +1I a9 O°f 10 2-10 *atm, a value that is consistent with an order of
s magnitude calculation witlh.~ =10"° dynes/cm and a film
e thickness of 0.0um. Similar order of magnitudes fai, are
le[ v :(VQ)T] :kk consistent with an order of magnitude calculation using the
IvVQ present model, with an anchoring strength of i@rg/cnt

=L, [VQ:(VQ) :kk +L,[(VQ)T-(VQ)]:kk, (20) and a characteristic tangential distance of O, repre-
senting the coherence length.

of dYan
pi— pNzncd+[ﬁ:(VQ)T] :kk—{Vs- (dy—k)}

Comparing Eq(17) with Eq. (18) we see that the structural
disjoining pressurél, is given by

dyan As a representative illustration of the calculation of the
H:_vs'(d_k) transverse structural disjoining pressdile we assume a
b=0 uniaxial planar NLC film, with a constant director field, but a
=V [2B811Q k+28,,Q-k-Q space dependent scalar order parameter. This situation could

arise in a thin NLC film between two large viscous droplets,
+48,4Q:kk)Q -k} p=0, (21 or in a freely suspended film, where both interfaces are
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chemically and mechanically equivalent. In rectangular co-conjoining, depending on the sign di¥dx. Using an an-
ordinates X,y,z), with k along z, let n=(n,,0n,), andS  choring strength of 10" erg/cnt and a characteristic tangen-
=8(2z). Using Eq.(26) we find that the transverse structural tial distance of 0.0lum, representing the coherence length,
disjoining pressure for planar and homeotropic director ori{I, is of the order of 102 atm.
entation are The present mechanical model is based on the proper in-
5 L.\ /ds|2 corpgration of the asymmetric>'QS.su_rface and 33 bulk
le_( L+ _2) (_) . for n=(1,0,0, (24) elastic stress tensors of nematic liquid crysfdl§] into the
3 6/\dz static limit of the interfacial linear momentum balance equa-
) tion [1]. On the other hand, rigorous and accurate thermody-
I :E( ﬁ)(d_s) © for n=(0,0,1) (25) namic models of nematic liquid crystals have been devel-
L3\t 3 /ldz) e oped and successfully applied to the description of structural
forces in confined systeni47,1§.
SincelL;>0 andL;+2L,/3>0, then in both caseH, >0, In summary, this paper presents a mechanical model of
as expected. In freely standing thermotropic NLC films it isstructural disjoining pressures in nematic liquid crystal films.
found experimentally that at the surface lay@r0.4-0.8  Using the generalized Laplace equation for nematics, two
and at the bulkS~0.3-0.5; the surface layer thickness is types of disjoining pressures are identified. The transverse
several hundred A2]. Using Egs.(30), (31), (dS/dx)*  component of the disjoining pressure arises due to tensor
=1/(500AY, and an effective Frank constanL  order parameter gradients across the film thickness. The
=10 °dynes, we foundI, =10 ?atm. As a representative transverse structural disjoining pressure is positive definite
illustration of the calculation of the tangential structural dis-and stabilizes the film. The tangential component of the dis-
joining pressurdl, we assume a uniaxial planar NLC film, joining pressure arises due to gradients of the tensor order
with a constant director field, but a space dependent scalggarameter along the film, and it can be disjoining or conjoin-
order parameter. In rectangular coordinates/(z), with kK ing. An order of magnitude analysis of the two structural
along z, let n=(n,,0n;), n-k=cosf, and S=S(x). This  pressures is consistent with experimental results. The me-
situation could arise in a thin NLC bridge, under conditionschanical model is based on the generally valid Laplace pres-
that promote changes in the order parameter along the NL&ure balance equation for an interface; the transverse struc-
bridge, as occurs in classical disjoining pressure measureural disjoining pressures arise as a consequence of the bulk
ments[4]. Using Eq.(27) we find that the tangential struc- Ericksen stress tensor present in nematics, while the tangen-
tural disjoining pressure for an arbitrary director orientationtial structural disjoining pressure is a consequence of gradi-
is ents of the surface stress tensor. The theoretical framework
developed in this paper can be used to study the stability of
_ E 2 - d_S thin films, fluctuations in thin films, and liquid crystal foam
I,= ,8114—3,821S+4/3228(0050 1/3) | sin Zadx’ (26) stability

which shows that if the director orientation is not an extrema Financial support from the Natural Sciences and Engi-
of the anchoring energy, scalar order parameter gradientseering Research CoundlNSERQ of Canada is gratefully
create a structural film pressure that can be disjoining oacknowledged.
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